
iological

sychiatry:
NNI
Commentary

B
P
C

Identifying Neurobiological Markers of
Posttraumatic Stress Disorder Using Resting-
State Functional Magnetic Resonance Imaging
Data: The Promise of Data-Driven Computational
Approaches

Yuval Neria, Amit Lazarov, and Xi Zhu
Current psychiatric research, evaluation, and treatment rely on
a diagnostic system based almost exclusively on subjective
data, such as self-reported experiences and questionnaires,
rather than on more objective markers. Recent advances in
computational power have enabled the increasing use of data-
driven computational approaches aiming to identify objective
neural markers for diagnosing psychopathology (i.e., classi-
fying subjects as either patients or healthy control subjects),
predicting illness onset and development, and predicting
treatment response. The pursuit of objective markers is mostly
in its infancy, highlighting the need for additional efforts, better
collaborative endeavors across labs, and large datasets, which
would further advance the clinical applications of data-driven
computational approaches in psychiatry.

In the current issue of Biological Psychiatry: Cognitive
Neuroscience and Neuroimaging, Fitzgerald et al. (1) examined
whether whole-brain hippocampal resting-state functional
connectivity (rsFC), assessed shortly after exposure to trauma
with functional magnetic resonance imaging (fMRI), can fore-
cast future onset of posttraumatic stress disorder (PTSD)
symptoms (1). Ninety-eight patients with traumatic injury were
recruited during or immediately after hospitalization in the
emergency department. Patients completed an rsFC scan
within the first month after the injury and a clinical evaluation of
PTSD 6 months later, based on the Clinician-Administered
PTSD Scale for DSM-5 (CAPS-5). Whole-brain rsFC with
bilateral hippocampi seeds were extracted, and a multivariate
pattern analysis (MVPA) approach was used to examine the
utility of whole-brain distributed hippocampal rsFC patterns in
predicting individual PTSD symptoms. The results indicated
that acute hippocampal rsFC significantly predicted CAPS-5
scores 6 months later, confirming previous findings indicating
the key role the hippocampus plays in PTSD, possibly owing to
its involvement in memory functions (consolidation and
retrieval) and fear-related learning processes (extinction recall).
This study is particularly interesting in that it shows that
functional integration of the hippocampal rsFC across the
whole brain, measured acutely after exposure to trauma, can
function as a significant biomarker for the future development
of PTSD symptoms.

The key strengths of the current study are its longitudinal
design, the type of data used (both resting-state fMRI and
clinical data), and the data analyses methods used. First, using
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a longitudinal design, this study incorporates neuroimaging
data collected in the acute aftermath of trauma exposure to
predict the risk of developing PTSD 6 months later. Predicting
PTSD symptomology based on hippocampus whole-brain
connectivity patterns immediately after trauma exposure ex-
tends our current knowledge on the role of the hippocampus in
the onset of PTSD and of its course. Second, using fMRI-
based rsFC data has several advantages over traditional
task-based fMRI research. Unlike task-based fMRI research,
which is characterized by limited test–retest reliability and
failure to replicate findings—two features crucial to trusting
emerging scientific results (2)—rsFC methods have been
increasingly shown to yield greater reliability and reproduc-
ibility, especially when large-scale connectivity patterns be-
tween distributed brain networks are examined. In addition,
low performance demands from participants during scans
yields high compliance, which in turn minimizes behavioral
confounds that are normally found in longer task-based fMRI
scanning. These advantages, as well as the standardization
and relatively low cost of rsFC, make rsFC especially suitable
for clinical applications. Third, by using an MVPA method,
Fitzgerald et al. (1) addressed well-documented shortcomings
of group-level univariate analysis, which most rsFC studies in
PTSD have been using to identify biomarkers. As univariate
methods permit inference only at the group level and assume
that the covariance across neighboring voxels is not informa-
tive, the application of univariate methods to clinical population
is significantly limited.

Data-driven computational approaches and MVPA have
gained traction in recent years. They enable better access to
whole-brain spatial distribution patterns of neural activation
and to FC patterns across multiple voxels when predicting
experimental variables (3), providing highly valuable informa-
tion at the individual level. Several machine learning ap-
proaches have been used for multivariate pattern analysis in
rsFC studies, offering the opportunity to search for or identify
the most useful disorder-specific neural patterns across the
entire brain, free of the constraints of traditional univariate
schemes. Specifically, the MVPA method helps clarify how
rsFC of multiple voxels might collectively correspond to a
given diagnosis, symptom severity, or cognitive event. To date,
there are several MVPA methods (Figure 1A), including
methods based on correlation (4), regression (5), support
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Figure 1. Snapshot of resting-state functional magnetic resonance imaging (RS fMRI) studies using data-driven approaches/multivariate predictive models.
We searched PubMed for original neuroimaging research articles using RS fMRI in posttraumatic stress disorder published between January 2000 and October
2021. The search terms included “posttraumatic stress disorder,” “machine learning” or “data-driven,” and “resting-state fMRI” or “functional connectivity.”
Nonhuman and nonclinical studies were excluded, as well as those that did not use multivariate pattern analysis. The initial search yielded 87 studies, of which
32 studies were selected based on a full-text review. (A) (Top) Categories of machine learning methods. (B) Growth of machine learning studies using RS fMRI
in posttraumatic stress disorder since 2015. (C) Use of machine learning models. “Diagnosis” refers to patient versus control subject classification, “symp-
toms” refers to the prediction of continuous symptom scores, “risk” refers to classification of groups that are at high risk, “treatment” refers to predictions of
individual differences in disease progression and response to an intervention, and “biotypes” refers to the identification of subgroups of patients based on
brain patterns. (D) Frequently used RS functional connectivity measures in these studies including region of interest to region of interest–based correlation
matrix, amplitude of low-frequency fluctuation (ALFF), seed-based region of interest–to-voxel whole-brain measures, voxel-to-voxel whole-brain–wise func-
tional connectivity strength (FCS), and independent component analysis (ICA). SVM, support vector machine; SVR, support vector regression.
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vector machines (6), support vector regression (7), and deep
learning neural networks (8). Fitzgerald et al. (1) used a kernel
ridge regression MVPA approach to explore whether the
functional integration of the hippocampi across the whole brain
can forecast future PTSD symptom severity.

In recent years, the application of MVPA methods aided by
data-driven computational approaches/machine learning has
been acknowledged by multiple labs, resulting in a dramatic
increase in the number of machine learning studies using rsFC
in PTSD (Figure 1B). Machine learning research can be broadly
grouped into two categories: supervised and unsupervised
(Figure 1A). In supervised learning, a priori known categorical
(e.g., diagnostic labels of groups) or continuous (e.g., PTSD
symptom severity) outcome variables are used to train or
“teach” a model to make accurate prediction of a new “un-
seen” dataset. In unsupervised learning, mathematical algo-
rithms are used to reveal or uncover a presumably existing
structure in the data, without a priori knowing the true labels of
the data (Figure 1A). Initially, supervised machine learning ef-
forts in PTSD primarily focused on the development of auto-
matic tools for identifying a PTSD diagnosis. About 50% of the
rsFC studies we reviewed (n = 16) focused on distinguishing
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PTSD patients from control subjects or one PTSD subtype
from another (e.g., PTSD and major depressive disorder vs.
PTSD alone; PTSD with vs. without dissociative symptoms)
(Figure 1C) (6), yielding moderate to high accuracy rates. These
studies suggest that the underlying neural circuitry of PTSD, as
reflected in rsFC data, may begin to characterize the pheno-
type of PTSD. Only 6 studies (19%) used rsFC to predict
symptom severity collected cross-sectionally at the same time
point as the imaging data, with even fewer studies using
baseline rsFC to predict a future PTSD diagnosis or treatment
response (4 studies [13%] used rsFC to predict PTSD and 3
studies [9%] used rsFC to predict treatment response)
(Figure 1C).

Key barriers still exist before such tools can be clinically
useful, as PTSD is not only a highly heterogeneous disorder
but also a highly comorbid disorder, especially with major
depressive disorder (as seen in approximately 50% of patients
with PTSD), complicating efforts to identify brain markers for
diagnosis, risk prediction, and treatment efficacy (9). Since
techniques allowing for complex multiple diagnoses in psy-
chiatry are challenging, a shift toward the exploration of unique
biotypes that go beyond the boundaries of traditional
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diagnoses using unsupervised machine learning (e.g., a PTSD–
major depressive disorder biotype) may be useful. Yet to date,
only 3 studies (9%) have examined subtypes of PTSD using
unsupervised machine learning methods (Figure 1A).

Lastly, to develop reliable, replicable, and clinically useful
markers for diagnosis, illness course, and treatment response,
large, heterogeneous datasets are highly needed. To date,
most studies are single-site studies exploring small homoge-
neous samples, which tend to yield better performance
compared with studies using larger samples owing to what is
known as overfitting—when a machine learning model is too
complex and, though working well in the training dataset, fails
to generalize to an unseen one. Unfortunately, in PTSD, no
study has explored the reproducibility of findings across mul-
tiple sites. The results of single-site studies are also more
difficult to interpret and compare across studies owing to
major differences in analytical approaches, scanners, acqui-
sition parameters, and data processing pipelines. In addition,
most studies estimate the model’s performance within a single
cohort dataset, in which all samples are used in building the
prediction model. Thus, no testing of the model’s performance
is conducted using an independent unseen test dataset.
Importantly, however, for machine learning models to be useful
in real-world clinical settings, an evaluation of the model’s
generalizability and robustness using unseen independent
cohorts is needed, which can be achieved only when using
samples that are large enough. Fortunately, several large-scale
studies have been made possible by the recent establishment
of several research consortia across healthy participants (the
Human Connectome Project [HCP]), adolescents (the
Adolescent Brain Cognitive Development [ABCD] Study), older
participants (the Alzheimer’s Disease Neuroimaging Initiative
[ADNI]), and more importantly and relevant in the present
context, across psychiatric patient populations (Enhancing
Neuro Imaging Genetics through Meta Analysis [ENIGMA]) (10).
These consortia promote model development based on large
samples, which are more likely to generalize across scanners
and commonly encountered variations in study procedures,
enabling tests on independent datasets with different charac-
teristics. The increasing number of collaborative efforts will
allow us to share predictive models that have been rigorously
tested and make an important contribution to translational
psychiatric research.
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