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ABSTRACT
BACKGROUND: Comorbidity between posttraumatic stress disorder (PTSD) and major depressive disorder (MDD)
has been commonly overlooked by studies examining resting-state functional connectivity patterns in PTSD. The
current study used a data-driven approach to identify resting-state functional connectivity biomarkers to 1)
differentiate individuals with PTSD (with or without MDD) from trauma-exposed healthy control subjects (TEHCs),
2) compare individuals with PTSD alone with those with comorbid PTSD1MDD, and 3) explore the clinical utility of
the identified biomarkers by testing their associations with clinical symptoms and treatment response.
METHODS: Resting-state magnetic resonance images were obtained from 51 individuals with PTSD alone, 52 in-
dividuals with PTSD1MDD, and 76 TEHCs. Of the 103 individuals with PTSD, 55 were enrolled in prolonged exposure
treatment. A support vector machine model was used to identify resting-state functional connectivity biomarkers
differentiating individuals with PTSD (with or without MDD) from TEHCs and differentiating individuals with PTSD
alone from those with PTSD1MDD. The associations between the identified features and symptomatology were
tested with Pearson correlations.
RESULTS: The support vector machine model achieved 70.6% accuracy in discriminating between individuals with
PTSD and TEHCs and achieved 76.7% accuracy in discriminating between individuals with PTSD alone and those
with PTSD1MDD for out-of-sample prediction. Within-network connectivity in the executive control network,
prefrontal network, and salience network discriminated individuals with PTSD from TEHCs. The basal ganglia
network played an important role in differentiating individuals with PTSD alone from those with PTSD1MDD.
PTSD scores were inversely correlated with within–executive control network connectivity (p , .001), and
executive control network connectivity was positively correlated with treatment response (p , .001).
CONCLUSIONS: Results suggest that unique brain-based abnormalities differentiate individuals with PTSD from
TEHCs, differentiate individuals with PTSD from those with PTSD1MDD, and demonstrate clinical utility in
predicting levels of symptomatology and treatment response.

Keywords: fMRI classification, Machine learning, Major depressive disorder, Posttraumatic stress disorder, Resting-
state functional MRI, Support vector machine, Treatment outcome
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Posttraumatic stress disorder (PTSD) is a debilitating condition
commonly observed in individuals following traumatic expo-
sure, with estimated lifetime prevalence of 6.8% (1). PTSD is
highly heterogeneous (2) and frequently comorbid with major
depressive disorder (MDD) (3), complicating our ability to
identify its brain mechanisms and identify novel therapeutic
targets. Accumulating resting-state functional connectivity
(rsFC) studies implicate altered within-network connectivity in
the salience network (SN), default mode network (DMN), and
executive control network (ECN) as well as between these
networks (4,5). Within the SN, which typically includes the
anterior cingulate cortex (ACC) and anterior insula, studies
have found enhanced connectivity between the amygdala and
insula nodes in individuals with PTSD relative to trauma-
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exposed healthy control subjects (TEHCs) and non-trauma–
exposed healthy control subjects (HCs) (5–7). It was hypoth-
esized that such enhanced connectivity attests to
hypervigilance (6,7), whereas decreased connectivity between
DMN nodes (e.g., posterior parietal cortex [PPC], precuneus,
ventromedial prefrontal cortex [PFC], hippocampus) in in-
dividuals with PTSD (5,8,9) reflects depersonalization/dereal-
ization symptoms (10). It has been further suggested that these
altered rsFC patterns may represent neurobiological correlates
of increased salience processing and hypervigilance at the
cost of awareness of internal thoughts and autobiographical
memory in PTSD (4). Individuals with PTSD also showed
decreased connectivity within the ECN (or frontal parietal
network, which includes portions of the lateral PFC and PPC),
All rights reserved.
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potentially representing diminished emotion regulation abilities
(i.e., inability to downregulate negative emotions) (11,12).

Although the preponderance of data supports a view of
PTSD as being associated with altered within- and between-
network connectivity in the SN, DMN, and ECN, divergent
findings have also been reported (4). Within the SN, connec-
tivity between the amygdala and dorsal ACC has been shown
in various studies to be higher (13), lower (6), or unaltered (7) in
individuals with PTSD compared with control subjects (TEHCs
and HCs). Both higher (5,14) and lower (8) between-network
connectivity of DMN nodes, such as the PCC/precuneus and
SN, have been demonstrated in individuals with PTSD
compared with control subjects. Some studies have reported
reduced connectivity between the amygdala and the inferior
frontal gyrus, ventromedial PFC, and middle frontal cortex
(6,13,14), whereas others have found no differences in con-
nectivity between the amygdala and ventromedial PFC
pathway (7,15).

A potential reason for these divergent findings might be the
high comorbidity rates between PTSD and MDD, which have
been largely overlooked by existing connectivity data analyses.
PTSD and MDD co-occur in as many as 52% of cases (16,17),
and this comorbidity is associated with significantly greater
subjective distress and impairment than either condition alone
[e.g., (7–10)], demonstrating a more chronic course of impair-
ment (18). These clinical differences suggest that corre-
sponding underlying neurobiological differences may be
present as well. Meta-analyses on connectivity abnormalities
in MDD (19–22) suggest that MDD is characterized by hypo-
connectivity within the ECN and between frontoparietal sys-
tems and parietal regions of the dorsal attention network
(DAN). MDD was also associated with hyperconnectivity within
the DMN and with hyperconnectivity between ECN control
systems and regions of the DMN. It is an open question
whether individuals with PTSD1MDD show more connectivity
abnormalities that are similar to those documented among
individuals with MDD than do individuals with PTSD without
MDD comorbidity.

To date, only a few studies (23,24) have assessed whether
individuals with PTSD1MDD exhibit connectivity differences
relative to individuals with PTSD alone. Kennis et al. (23) found
in PTSD1MDD, versus PTSD alone, increased connectivity
between the subgenual and perigenual ACC as well as
decreased connectivity of the subgenual ACC with the thal-
amus. Yet this study focused on the insula and ACC as seed
regions and did not address potential alterations in pathways
involving the nucleus accumbens (NAcc). Zhu et al. (24) found
that PTSD1MDD, compared with PTSD alone, was associated
with multifaceted functional connectivity alterations, including
decreased connectivity across multiple amygdala and striatal-
subcortical pathways. These findings suggest that individuals
with comorbid PTSD1MDD may show dysfunctions that
characterize both individuals with PTSD and those with MDD,
but it was not possible to draw definitive conclusions because
of the small sample size.

Little is known about the clinical utility of the altered
within- and between-networks connectivity identified so far
in the literature on PTSD. The few available findings suggest
that rsFC of the PCC with the perigenual anterior cingulate
and the right amygdala is associated with current PTSD
Biological Psychiatry: Cognitive Neuroscience and
symptoms and that correlation with the right amygdala pre-
dicts future PTSD symptoms, but no treatment effect has
been studied (25). Another study showed that neural circuitry
changes may be associated with treatment response but did
not investigate the ability of baseline biomarkers to predict
treatment response (26). Closing this gap in the literature by
investigating the clinical utility of identified biomarkers is of
critical importance in the progress toward personalized
PTSD treatments (27).

To address these gaps in knowledge, the current study had
four aims, namely to 1) identify network connectivity differ-
ences distinguishing individuals with PTSD (with and without
comorbid MDD) from TEHCs, 2) identify network connectivity
differences distinguishing individuals with PTSD without MDD
from those with PTSD1MDD, 3) examine the clinical utility of
the features identified through aims 1 and 2 by examining their
associations with MDD and PTSD symptomatology, and 4) test
the utility of the identified network connectivity features in
predicting subsequent treatment outcome in a subsample
receiving prolonged exposure (PE) therapy. These four aims
are critical for developing a better understanding of the unique
neuropathology of patients with PTSD and to identify novel
therapeutic targets.

To identify the network connectivity features (aims 1 and 2
above), the current study used a support vector machine (SVM)
model, which is a multivariate pattern recognition machine
learning (ML) technique especially well suited for discriminating
high-dimensional rsFC functional magnetic resonance imaging
(fMRI) data. ML approaches have two main advantages over
standard univariate analytical methods that are typically used
in neuroimaging. First, the traditional approaches are based on
average estimates of differences at the group level. By
contrast, ML approaches make possible inferences at the level
of the individual rather than the group. In an effort to increase
the translational applicability of the results to clinical practice
where decisions are made about individual patients and not
groups, there has been a recent shift toward the use of
multivariate ML techniques (28–32). Findings based on ML
approaches are expected to have higher translational appli-
cability to everyday decision making in clinical practice. Sec-
ond, ML approaches are more sensitive to differences that are
subtle and spatially distributed by taking interregional corre-
lations into account. Such spatially distributed patterns in the
brain might be undetectable using group comparisons. Thus,
ML approaches provide an optimal framework for investigating
psychiatric disorders that affect a distributed network of re-
gions (29–32).

Previous studies comparing traditional and ML ap-
proaches with group classification based on resting-state
data suggest that ML approaches are more sensitive to
the subtle and spatially diffuse alterations typically
observed in psychiatric disorders and therefore may be
better suited to the development of real-world clinical
diagnostic tools than are standard mass-univariate tech-
niques (28). Previous studies suggest SVM’s ability to
discriminate between trauma-exposed individuals with and
without PTSD (67.57%–91%) and between TEHCs and HCs
with high levels of accuracy (33,34). Studies further suggest
SVM’s ability to predict long-term response to antidepres-
sant medication (21).
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METHODS AND MATERIALS

Participants

We combined data from three studies conducted at the New
York State Psychiatric Institute. The studies were approved by
the Institutional Review Board of the New York State Psychi-
atric Institute, and all participants provided written informed
consent after receiving an explanation of the procedures. rsFC
fMRI was conducted in a total of 179 individuals (51 with PTSD
alone, 52 with PTSD1MDD, and 76 TEHCs). Detailed inclusion
and exclusion criteria for each study appear in Table S1.
Briefly, all participants met the DSM-IV-TR criteria A1 and A2
(35) or the DSM-5 PTSD criterion A (36) for adult traumatic
events. Clinical evaluators administered the Structured Clinical
Interview for DSM-IV Axis I Disorders (37) and the Clinician-
Administered PTSD Scale (CAPS) (38) to establish psychiatric
diagnoses and assess PTSD severity. All participants in the
PTSD1MDD group, but not in the PTSD-alone and TEHC
groups, also met Structured Clinical Interview for DSM
Disorders DSM-IV or DSM-5 criteria for a major depressive
episode (35). Exclusion criteria for participants in the TEHC
group consisted of current or past Axis I disorders, including
substance use disorders and the use of any psychotropic
medications. Exclusion criteria for all groups included any
condition that would rule out MRI administration.

A subsample of 55 patients with PTSD (33 PTSD alone and
22 PTSD1MDD) underwent PE treatment conducted by one of
two trained therapists adhering to a 10-week standard PE
protocol (39). The detailed PE treatment protocol was
described in Helpman et al. (40) and Zhu et al. (24).

Seed-Based Functional Connectivity Analyses

Neuroimaging data acquisition, preprocessing of imaging
data, and seed-based functional connectivity analyses appear
in the Supplement. rsFC analyses were carried out using a
seed-based approach implemented in the CONN fMRI func-
tional connectivity toolbox version 13 (41). Region of interest
(ROI)-to-ROI connectivity analysis was performed using 43
ROIs previously identified as important in PTSD and MDD (see
Supplement). The mean blood oxygen level–dependent time
series was computed across all voxels within each ROI.
Bivariate regression analyses were used to determine the linear
association of the blood oxygen level–dependent time series
between each pair of regions for each individual. The resultant
correlation coefficients were transformed into z scores using
Fisher’s transformation to satisfy normality assumptions.

Statistical Analyses

Clinical Variables. We used SPSS software, version 23
(IBM Corp., Armonk, NY) for statistical analyses. t tests were
used to test the differences in clinical symptoms and age be-
tween groups. Chi-square tests were used to analyze differ-
ences in gender and race.

ML Analysis: SVM. Linear kernel SVM has emerged as one
of the most popular supervised ML methods, with learning al-
gorithms aimed at classification used in neuroimaging (42) and
psychiatry (43) studies. SVM uses a well-defined dataset to
create a decision function or hyperplane that can best
690 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging J
distinguish between categories, which can then be used to
predict to which predefined group a new observation belongs.
SVM can effectively handle high-dimensional data and is less
prone to overfitting of the data (44). SVM classifies data points
by maximizing the margin between classes in a high-dimensional
space (45). It constructs an optimal classifier through a training
phase in which key brain features are identified to distinguish
between two groups (such as patients vs. control subjects),
which is then applied to categorize new unseen data in the
testing phase. Comparison studies between multivariate pattern
recognition methods showed that SVM reduces the effect of
noisy features that are highly correlated with each other in the
presence of a large number of features (45). SVM can be com-
bined with different methods for dimensionality reduction and
feature selection to improve diagnostic accuracy (45). SVM was
applied using the Statistics and Machine Learning Toolbox in
MATLAB (The MathWorks, Inc., Natick, MA). The main steps of
the SVM method included 1) preprocessing of features
(regressing out age, gender, and dataset and normalizing each
feature to [21 1]), 2) feature extraction and selection within each
cross-validation (using an embedded feature selection method,
which combines filter- and wrapper-based approaches, to select
the most discriminative features), 3) training the SVM classifier
model by 10-fold cross-validation using the training data, and 4)
evaluating the performance of the SVM model using the 10%
holdout evaluation data (46). For more information regarding
each of the steps, see the Supplement.

Correlation Analysis. We used SPSS software to calculate
the correlations between identified features and clinical
symptoms. Because some of the studies used CAPS-IV and
others used CAPS-5, we used the index developed by Powers
et al. (47) to convert the two versions of the CAPS into a
common one for analysis. To correct for multiple correlations,
we used an alpha of .0028 (0.05/18) for the 18 network con-
nectivities identified based on the SVM implementation for the
first comparison (individuals with PTSD with and without MDD
vs. TEHCs) and used an alpha of .0025 (0.05/20) for the 20
network connectivities for the second comparison (individuals
with PTSD alone vs. individuals with PTSD1MDD). We
regressed out age, gender, and sites/scanners as covariates
during the feature preprocessing, so no covariate was used
during the correlation analysis. Combining data from different
scanners with different scanning parameters and field
strengths is common in the neuroimaging literature (48) and
can yield reliable data (49) as long as the data are regressed
out for scanner type. To examine associations between the
identified features and treatment outcome in the subsample
receiving PE, we also tested the correlations between pre-
treatment rsFC features and reduction in PTSD symptoms
from pretreatment to posttreatment in both the CAPS and
Hamilton Depression Rating Scale (HAM-D).
RESULTS

Demographics and Clinical Characteristics of the
Participants

The PTSD and TEHC groups were not significantly different in
gender (58 male subjects for the PTSD group; 36 male subjects
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Table 1. Demographic and Clinical Characteristics of the Three Groups

TEHC Group (n = 76) PTSD Alone Group (n = 51) PTSD1MDD Group (n = 52)

Gender, n (%)

Male 36 (47.36%) 29 (56.86%) 29 (55.76%)

Female 40 (52.64%) 22 (43.14%) 23 (44.24%)

Race, n (%)

Caucasian 21 (27.63%) 12 (23.52%) 17 (32.69%)

African American 23 (30.26%) 27 (52.94%) 22 (42.30%)

Hispanic 26 (34.21%) 0 (0%) 5 (9.61%)

Other 6 (7.89%) 12 (23.52%) 8 (15.38%)

Age, Years, Mean (SD) 40.8 (15.8) 40.6 (13.8) 43.9 (14.7)

HAM-D, Mean (SD) 2.97 (3.5) 12.8 (6.2) 18.7 (6.1)

Total CAPS, Mean (SD) 6.3 (6.8) 56.8 (23.5) 57.2 (28.9)

CAPS, Clinician-Administered PTSD Scale; HAM-D, Hamilton Depression Rating Scale; MDD, major depressive disorder; PTSD, posttraumatic
stress disorder; TEHC, trauma-exposed healthy control subject.

ECN.LPFCl

Figure 1. The most discriminative networks from differentiating all in-
dividuals with posttraumatic stress disorder (PTSD) from trauma-exposed
healthy control subjects (TEHCs). Purple: TEHCs . PTSD; blue: TEHCs ,

PTSD. The figure represents the connectogram of the most discriminative
multivariate features (spatial functional connectivity). The abbreviations are
listed in Table 2.
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for the control group; c2
1 = 1.40, p = .23) or age (42.22 years

for the PTSD group; 40.80 years for the control group;
t177 = 20.63, p = .53). Patients with PTSD showed a signifi-
cantly higher total CAPS score than TEHCs (t = 215.92, p ,

.0001). We repeated the analyses to test potential differences
between the PTSD groups with and without MDD comorbidity.
No significant differences were found for age (t101 = 21.17, p =
.24), CAPS (t101 = 20.79, p = .93), or gender (c2

1 = 0.013, p =
.91) between the two groups. As expected, the PTSD1MDD
group had higher HAM-D scores than the PTSD without MDD
group (means = 18.67 and 12.82, respectively; t101 = 24.80, p
, .0001). Detailed demographic and clinical data are shown in
Table 1.

Discrimination Between Individuals With PTSDWith
and Without MDD and TEHCs

The PTSD versus TEHC classification revealed 18 final fea-
tures (for the full list, see Figure 1) as the final selected subset
based on the SVM implementation (area under the curve =
0.87, loss = 0.16; validation testing set: accuracy = 70.6%).
The most discriminative features differentiating individuals with
PTSD from TEHCs included within-network connectivity in the
ECN, including ECN.LPFCr–ECN.PPCr and ECN.LPFCl–
ECN.PPCl, and within the SN (SN.ACC–SN.AInsulal and
CMA–SN.AInsular) (see Table 2 for network abbreviations).
Compared with individuals with PTSD, TEHCs showed stron-
ger connectivity in the within-ECN and within-SN networks. All
abbreviations appear in Table 2.

Discriminative features also emerged between network
connectivity among SN–DAN, SN–DMN, DMN–DAN, and
DMN–ECN. Compared with patients with PTSD, TEHCs
showed lower connectivity in the DMN–DAN and SN–
DMN but showed higher connectivity in the SN–DAN,
SN–DMN, and DMN–ECN. For a full list of areas, see
Table S2.

Discrimination of Individuals With PTSD1MDD
From Those With PTSD Alone

The PTSD-alone versus PTSD1MDD classification revealed
20 final features (for the full list, see Figure 2) as the final
selected subset based on the SVM implementation
Biological Psychiatry: Cognitive Neuroscience and
(training set area under the curve = 0.85, loss = 0.15;
validation testing set: accuracy = 76.7%). The most
discriminative features differentiating individuals with PTSD
alone from those with PTSD1MDD included within-network
connectivity in the basal ganglia network (BGN) (NAcc-
THA), within the DAN (DAN.FEFl–DAN.IPSr), and within the
SN (CMA-SN.RPFCl). Individuals with PTSD alone showed
higher within connectivity than individuals with
PTSD1MDD in the BGN but showed lower within con-
nectivity in the ECN, SN, and DAN.

In addition, discriminative features emerged between
the BGN and other related networks, including BGN–DAN
Neuroimaging July 2020; 5:688–696 www.sobp.org/BPCNNI 691
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Table 2. Abbreviations of Network Names

Network Seed Names Abbreviation Coordinates (x, y, z)

ECN Networks.Executive Control.Lateral Prefrontal Cortex left ECN.LPFCl 243, 33, 28

Networks.Executive Control.Lateral Prefrontal Cortex right ECN.LPFCr 41, 38, 30

Networks.Executive Control.Posterior Parietal Cortex left ECN.PPCl 246, 258, 49

Networks.Executive Control.Posterior Parietal Cortex right ECN.PPCr 52, 252, 45

SN Networks.Salience.Anterior Cingulate Cortex SN.ACC 0, 22, 35

Networks.Salience.AInsula left SN.Insulal 244, 13, 1

Networks.Salience.AInsula right SN.Insular 47, 14, 0

Networks.Salience.Rostral Prefrontal left SN.RPFCl 232, 45, 27

Networks.Salience.Rostral Prefrontal right SN.RPFCr 32, 46, 27

Networks.Salience.Supramarginal Gyrus left SN.SMGl 260, 239, 31

Networks.Salience.Supramarginal Gyrus right SN.SMGr 62, 235, 32

Atlas.Amygdala AMG 623, 24 , 218

Atlas.Basolateral Amygdala BLA 627, 27, 210

Atlas.Central Medial Amygdala CMA 623, 26, 220

DMN Networks.DefaultMode.Medial Prefrontal Cortex DMN.MPFC 1, 55, 23

Networks.DefaultMode.Lateral Parietal left DMN.LPl 239, 277, 33

Networks.DefaultMode.Lateral Parietal right DMN.LPr 47, 267, 29

Networks.DefaultMode.Posterior Cingulate Cortex DMN.PCC 1, 261, 38

Atlas.Anterior Hippocampus HIPA 630, 215, 218

Atlas.Posterior Hippocampus HIPP 629, 238, 2

Atlas.Precuneus Cortex Precuneus 0, 265, 41

BGN Atlas.Nucleus Accumbens NAcc 10, 12, 27

Atlas.Thalamus THA 610, 217, 9

DAN Networks.DorsalAttention.Frontal Eye Fields left DAN.FEFl 227, 29, 64

Networks.DorsalAttention.Frontal Eye Fields right DAN.FEFr 30, 26, 64

Networks.DorsalAttention.Intraparietal Sulcus left DAN.IPSl 239, 243, 52

Networks.DorsalAttention.Intraparietal Sulcus right DAN.IPSr 39, 242, 54

PFN Atlas.Superior Frontal Gyrus right SFGr 16, 18, 61

Atlas.Superior Frontal Gyrus left SFGl 216, 18, 61

Atlas.Middle Frontal Gyrus right MidFGr 43, 18, 45

Atlas.Middle Frontal Gyrus left MidFGl 243, 18, 45

Atlas.Inferior Frontal Gyrus, Pars Triangularis right IFGtrir 46, 27, 27

Atlas.Inferior Frontal Gyrus, Pars Triangularis left IFGtril 246, 27, 27

Atlas.Inferior Frontal Gyrus, Pars Opercularis right IFGoperr 54, 16, 19

Atlas.Inferior Frontal Gyrus, Pars Opercularis left IFGoperl 254, 16, 19

Atlas.Frontal Pole right FPr 31, 59, 13

Atlas.Frontal Pole left FPl 231, 59, 13

Atlas.Subcallosal Cortex SubCalC 0, 21, 213

Atlas.Orbital Frontal Cortex right OFCr 32, 24, 215

Atlas.Orbital Frontal Cortex left OFCl 232, 24, 215

SMN Networks.SensoriMotor.Lateral left SMN.Ll 255, 212, 29

Networks.SensoriMotor.Lateral right SMN.Lr 56, 210, 29

Networks.SensoriMotor.Superior SMN.S 0, 231, 67

BGN, basal ganglia network; DAN, dorsal attention network; DMN, default mode network; ECN, executive control network; PFN, prefrontal
network; SMN, sensorimotor network; SN, salience network.
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and BGN–SN, as well as other between-network
connectivity, including SN–DMN, DAN–ECN, and SMN–
DMN. Individuals with PTSD alone showed higher
connectivity in BGN-other networks, SN–DMN, DAN–ECN,
and SMN–other networks. For a full list of areas, see
Table S3.
692 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging J
Associations Between the Identified Biomarkers at
Baseline and PTSD and MDD Symptomatology at
Baseline

We examined the correlations between rsFC features identified
above and CAPS and HAM-D symptom severity at baseline.
uly 2020; 5:688–696 www.sobp.org/BPCNNI
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ECN.PPCl

PFN.IFGtril

Figure 2. The most discriminative networks from differentiating in-
dividuals with posttraumatic stress disorder (PTSD) alone from individuals
with PTSD 1 major depressive disorder (MDD). Purple: PTSD alone .

PTSD1MDD; blue: PTSD alone , PTSD1MDD. The figure represents the
connectogram of the most discriminative multivariate features (spatial
functional connectivity). The abbreviations are listed in Table 2.
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Associations Between Identified Biomarkers From
PTSD-All and TEHC Classification and Symptomato-
logy. For the CAPS, significant negative correlation was
found between baseline CAPS scores and within-ECN con-
nectivity with p , .001 (ECN.LPFCR–ECN.PPCR: r = 2.302;
FPr-ECN.PPC: r = 2.248; ECN.LPFCL–ECN.PPCL:
r = 2.237). For the HAM-D, significant negative correlation
was found between baseline HAM-D scores and within-ECN
connectivity with p , .001 (FPr-ECN.LPFCR: r = 2.239, p =
.002).

Associations Between Identified Biomarkers From
PTSD1MDD and PTSD-Alone Classification and
Symptomatology. For the CAPS, no significant correlation
was found in any networks. For the HAM-D, no significant
correlation was found in any networks.

The Utility of Baseline Biomarkers in Predicting PE
Treatment Outcome, Calculated as Changes in
Symptoms From Pretreatment to Posttreatment

We examined the correlations between the baseline rsFC
features identified above and the changes in CAPS and HAM-
D symptom severity from baseline to posttreatment.

Features Identified From PTSD-All and TEHC Clas-
sification. For the CAPS, higher within-ECN connectivity
(ECN.LPFCr–ECN.PPCr: r = .455, p , .001; FPr-ECN.LPFCr:
r = .415, p = .002) correlated with greater PTSD CAPS symp-
tom reduction. For the HAM-D, no significant correlation was
found.
Biological Psychiatry: Cognitive Neuroscience and
Features Identified From PTSD-Alone and PTSD-
MDD Classification. For the CAPS, no significant associ-
ation was found. For the HAM-D, no significant association
was found.

Trend-Level Findings: Associations With Symptom-
atology at Baseline. For individuals with PTSD-all versus
TEHCs, a trending negative correlation was found between
baseline CAPS scores and within-SN connectivity (SN.ACC–
SN.Insulal: r = 2.205, p = .007). A trending positive correla-
tion was found between baseline CAPS scores and
within-DMN-DAN connectivity (DMN.LPR–DAN.FEFr: r = .207,
p = .007). For individuals with PTSD1MDD versus those with
PTSD alone, a trending negative correlation was found be-
tween baseline CAPS scores and NAcc-THA (r = 2.203, p =
.041). A trending negative correlation was also found between
baseline HAM-D scores and THA-DAN.FEFr connectivity
(r = 2.182, p = .066).

Trend-Level Findings: Associations With Treatment
Response. A trending positive correlation was found be-
tween greater PTSD CAPS symptom reduction and within-
ECN connectivity (FPr-ECN.PPCr: r = .365, p = .006) and
within-SN connectivity (SN.ACC–SN.Ainsulal: r = .284, p =
.035). For correlations with specific clusters of the CAPS, see
Tables S4 to S7.

DISCUSSION

The current study identified functional connectivity biomarkers
differentiating individuals with PTSD, individuals with
PTSD1MDD, and TEHCs and demonstrated their clinical util-
ity. An SVM model was able to discriminate with a high level of
accuracy between individuals with PTSD and TEHCs and be-
tween individuals with PTSD alone and those with comorbid
PTSD1MDD. Specifically, we achieved 70.6% accuracy in
discriminating between individuals with PTSD and TEHCs and
achieved 76.7% accuracy in discriminating between in-
dividuals with PTSD and those with PTSD1MDD for out-of-
sample prediction. Within-networks and between-networks
connectivity features differentiating individuals with PTSD
from TEHCs (Figure 1) and differentiating individuals with
PTSD alone from those with PTSD1MDD (Figure 2) were
consistent with at least some of the previous reports charac-
terizing connectivity abnormalities in PTSD and attest to the
importance of MDD-related abnormalities in differentiating
between PTSD alone and PTSD1MDD. The identified altered
connectivity features characterizing individuals with PTSD
(with or without MDD comorbidity) compared with TEHCs
demonstrated clinical utility, as evident by the associations
between these features and symptomatology and by the ability
to predict treatment response.

The findings attest to the ability to differentiate between
individuals with PTSD and TEHCs with a relatively high level of
accuracy. Consistent with at least some of the literature,
among the most discriminative features were altered within-
network connectivity in the SN and the ECN as well as
altered SN–DMN between-network connectivity (4,5). The
findings are consistent with some previous reports suggesting
enhanced connectivity between amygdala and insula nodes
Neuroimaging July 2020; 5:688–696 www.sobp.org/BPCNNI 693
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within the SN (6,7) but not with some other studies (4,50). In
addition to the networks described in the literature on PTSD,
the current findings also demonstrate the role of the triple
network alteration consisting of the ECN, the SN, and the
DMN. It has been suggested that the SN integrates sensory,
emotional, and cognitive information, acts as an interface be-
tween the DMN and the ECN to integrate and balance internal
mental processes with external stimulus-driven cognitive and
affective processes (51,52), and may be useful in differentiating
individuals with PTSD from control subjects (53). Individuals
with PTSD showed higher DMN–DAN network connectivity,
which may reflect the abnormal cognitive function associated
with PTSD. Currently, the diagnosis of PTSD relies on sub-
jective reporting of symptoms. The altered network connec-
tivities identified here may eventually be used to develop
objective biomarkers for PTSD to help clinicians improve the
accuracy of PTSD diagnosis.

The findings further demonstrated the ability to differentiate
between individuals with PTSD1MDD and those with PTSD
alone with 76.7% accuracy. Among the most discriminative
rsFC abnormalities in PTSD1MDD versus PTSD alone were
those related to reward dysfunctions, which are typical of
patients with MDD (54). Individuals with PTSD1MDD versus
those with PTSD alone showed rsFC abnormalities within the
BGN, which has been found to underlie reward behavior in
prior reports (55). The BGN comprises the striatum (subdivided
into the caudate nucleus and putamen), globus pallidus, and
thalamus (56). Altered BGN connectivity in individuals with
PTSD1MDD, as opposed to those with PTSD alone, may
underlie impaired motivation and a high prevalence of addic-
tions and substance use in this subpopulation (57). The find-
ings also attest to the importance of identifying not only
within-network but also between-network impairments, indi-
cating both altered BGN within-network connectivity and
altered connectivity between the BGN and other related net-
works (BGN–DAN and BGN–SN) in PTSD1MDD versus PTSD
alone.

Unique brain-based biomarkers differentiating PTSD alone
from PTSD1MDD may help to explain divergent findings in
PTSD connectivity studies enrolling heterogeneous populations,
mixing individuals with PTSD alone and those with PTSD1MDD.
Including different proportions of individuals with PTSD alone
and those with PTSD1MDD may influence which networks
show the most altered connectivity. Moreover, features differ-
entiating PTSD1MDD from PTSD alone may be useful in iden-
tifying novel therapeutic targets, which are much needed in this
comorbid subgroup that is frequently nonresponsive to treat-
ment and shows poor prognosis (18). Currently, targets of
intervention for PTSD include fear processing pathways but do
not addressMDD-related deficits. Potentially distinct patterns of
brain regions may be involved in fear and reward processing in
individuals with PTSD alone and in those with comorbid
PTSD1MDD. PTSD may be associated with decreased con-
nectivity of pathways that are key to fear processing and fear
expression such as the basolateral amygdala–orbital frontal
cortex and cingulate motor area–thalamus, respectively (58).
PTSD comorbidity with MDDmay be associated with decreased
connectivity of pathways, which are key to the reward system,
for example, decreased connectivity across multiple amygdala
and striatal–subcortical pathways: basolateral amygdala–orbital
694 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging J
frontal cortex, NAcc–thalamus, and NAcc–hippocampus (59).
Thus, it has been suggested that comorbid PTSD1MDD is
associated with multifaceted functional connectivity alterations
in both fear and reward systems (24). The current findings sup-
port this suggestion. The fact that available treatments do not
focus on the specific patterns of alteration that characterize in-
dividuals with PTSD1MDD may explain the poor prognosis of
currently available treatments for this subpopulation compared
with that of patients with PTSD alone (24). Given the importance
of the BGN and reward-related abnormalities in PTSD1MDD
versus PTSD alone, new therapeutic solutions for individuals
with PTSD1MDD are needed that target the altered BGN such
as those focusing on dopaminergic targets.

Several post hoc explanations may be suggested for why
classification accuracy for PTSD versus PTSD1MDD was
higher than that for PTSD versus non-PTSD. One explanation
is that the NAcc may play a critical role in differentiating be-
tween those with and without MDD comorbidity, resulting in
higher heterogeneity within the PTSD diagnosis (i.e., between
PTSD1MDD and PTSD alone) than between individuals who
were exposed to trauma and developed PTSD and those who
did not develop PTSD (24). This and other post hoc explana-
tions should be considered with caution, however, because the
difference between the clarification accuracy of individuals
with PTSD versus TEHCs and that of individuals with PTSD
alone versus Those with PTSD1MDD was only 6.1% (70.6%
and 76.7%, respectively).

Findings demonstrate the clinical utility of the identified bio-
markers discriminating individuals with PTSD-all from TEHCs.
Specifically, significant associations were found between alter-
ation inwithin-ECNconnectivity andPTSD andMDDsymptoms,
such that higher connectivity was associated with more severe
symptoms. The identified biomarkers were also capable of
predicting treatment response; lower within-ECN connectivity
was associated with greater PTSD symptom reduction. This
finding is consistent with a previous report demonstrating
decreased connectivity within the ECN in patients with PTSD,
potentially representing diminished emotion regulation abilities
(i.e., inability to downregulate negative emotions) (4). Interest-
ingly, the identified biomarkers discriminating PTSD alone from
PTSD1MDD were not significantly associated with symptom-
atology and treatment response. One potential post hoc expla-
nation is that the received treatment focused on PTSD and that
treatment focusing on MDD may have yielded different results.

Several limitations should be noted. First, the current study
combined data from three separate trials to increase sample
size, with some differences among the trials in their inclusion
andexclusion criteria aswell as differences between scanners in
spatial and temporal signal-to-noise ratios. In addition, we relied
exclusively on differences between DSM disorders despite the
potential interest in within-disorder variance, including catego-
rization options that transcend the boundaries of clinical diag-
nosis. Future studies should implement unsupervised ML
approaches that can complement the current findings by
determining the extent to which the biomarkers identified here
for PTSD1MDD and PTSD are indeed those that create distinct
subpopulations of patients. This could determine whether the
identified data-driven biotypes of homogeneous patterns of
dysfunctional connectivity match those found in the current
study. Future studies with larger samples should also explore
uly 2020; 5:688–696 www.sobp.org/BPCNNI
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the association between the different clusters of PTSD symp-
toms and the identified resting-state features. Finally, it should
be noted that because a trauma-unexposed subgroup was not
included, the effect of trauma exposure could not be tested.

These caveats notwithstanding, the current findings sug-
gest that unique sets of brain-based biomarkers differentiate
between individuals with PTSD (with and without comorbid
MDD) and TEHCs as well as between individuals with PTSD
alone and those with PTSD1MDD. Certain connectivity alter-
ations in the PTSD1MDD comorbid population versus the
PTSD-alone population may explain inconsistencies between
previous studies that enrolled diverse participant populations.
The current findings suggest that brain function abnormalities
observed in PTSD1MDD versus PTSD alone during fMRI
resting state were those related to corticolimbic dysregulation,
which are the basis of MDD etiology and describe altered
connections. The findings also stress the importance of the
triple network in PTSD. The findings further demonstrate the
clinical utility of the identified connectivity alterations, espe-
cially within the ECN, by demonstrating its associations with
PTSD and MDD symptoms and its ability to predict subse-
quent treatment response. Taken together, the findings sup-
port the potential of resting-state fMRI to inform accurate
future clinical assessment of psychopathology in individuals at
high risk for developing PTSD following exposure to trauma by
the development of objective biomarkers indicative of the
diagnostic heterogeneity of psychopathology and of treatment
prognosis. Such objective biomarkers may facilitate the early
identification of heterogeneous subtypes of illness. Neuro-
imaging techniques hold the promise to aid in the clinical
assessment of individual psychiatric patients, particularly in
cases where a clear differential diagnosis is difficult to estab-
lish because of comorbidity. If these findings are replicated in
future research, they can make an important contribution to
accurate diagnosis and help to identify precise targets for
maximally efficient treatment of PTSD1MDD and PTSD alone.
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